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A phenomenological theory is presented to explain the thermodynamic behavior of ammonium
chloride near the first-order phase transition at 242°K. The theory is similar to that of Gar-
land and Renard for NH,Cl and other theories for magnetic systems, but is cast in a form con-
venient for analysis of experimental data according to various scaling laws. The lattice sys-
tem gives rise to nonsingular terms in the Helmholtz free energy of the total system. The
order-disorder system gives rise to a singular term in the free energy. The coupling of the
two subsystems then produces the possibility of the first-order transition.

I. INTRODUCTION

Ammonium chloride (NH,C1) is a solid with a
CsCl-type crystal structure below 456 °K.! Two
unit cells of the crystal are shown in Fig. 1. The
nitrogen atoms in the ammonium ions sit at the body
centers of the chlorine simple cubic lattice, and the
N-H bonds point at the chlorine ions along the (111)
axes of the lattice. The two possible orientations
of the tetrahedral ammonium ion are shown in Fig.
1, where they are labeled a and b.

At a temperature near 242 °K, ammonium chloride
undergoes a phase change which was first discovered
by Simon, 2 who saw an anomalous peak in the heat
capacity near 242 °K. The transformation is as-
sociated with the orientation of the ammonium ions.
In the high-temperature state the probability of an
ion being in orientation a is equal to the probability
of it being in b. In the low-temperature state there
is a preference for neighbors to be in the same
orientation, and there is a macroscopic ordering of
the ammonium ions.®

Because of the basic two-state nature of the prob-
lem, it is natural to try to associate the behavior
of ammonium chloride near this transition with the
properties of the Ising model. The two orientations
of the ammonium ions can be associated with the
two states of the Ising spin. Such an identification
leads one to expect a second-order transition. How-
ever, careful experimental studies reveal that am-
monium chloride exhibits a volume discontinuity,
and that it has hysteresis, i.e., the temperature
of the transition depends upon whether one passes
through it by heating or by cooling. The conversion
of the transition from the expected second order to
first order is due to the nonzero compressibility of
the lattice. There is a good deal of work that shows
how this transformation from second- to first-order
behavior comes about. = Using a model in which
the tetrahedral coupling is that of a two-dimensional
Ising lattice and in which the lattice is considered
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compressible, Garland and Renard!? have explained
the main qualitative features of the transition.

In recent years, there have been a number of ex-
perimental and theoretical studies of second-order
phase transitions near the transition temperature.

It is our objective to compare the type of behavior
predicted by various theories with experiment. To
do so, we have developed an approach which incor-
porates the physical concepts of Garland and Renard
but is convenient for comparing arbitrary critical
behavior. In this paper we present the theory, and
in the following two papers (first and second follow -
ing papers, this issue) we apply the concepts to the
study of the heat capacity and the thermal expansion.

I1. CRITICAL BEHAVIOR IN A COMPRESSIBLE SYSTEM

Consider a system that has a singularity in the
free energy such that the system would exhibit a
second-order phase transition as the temperature
is varied at constant interparticle spacing. For a
given spacing the transition will occur at a temper-
ture T.. Since the microscopic interactions that
are responsible for the transition will, in general,
depend on the relative spacings of the particles in
the system, the temperature T, will also depend on
these spacings. In a cubic or isotropic medium this
means that T, will depend on the volume V, which
is a macroscopic measure of the average inter-
particle spacing.

b cL

FIG. 1.

Ammonium chloride structure.
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Change of variables.

It has been argued by many workers in the field
of phase transitions that the fluctuations in the sys-
tem are of primary importance in determining the
nature of the transition. Fisher!! was the first to
include the effects of volume fluctuations on the
strength of the interactions and show that the tran-
sition could remain second order when observed at
constant pressure. Baker and Essam, 12 Wag-
ner, * and Wagner and Swift!* have also shown that
under various conditions this type of transition will
remain second order, and thus they do not describe
the volume discontinuity, latent heat, and tempera-
ture hysteresis which we observe experimentally
for ammomium chloride. Therefore, in this paper
we have chosen to neglect the effects of the fluctua-
tions in interparticle spacing and include just the
average effect of the volume on the interaction since
the simple theory that results shows excellent quali-
tative agreement with the behavior of ammonium
chloride. We will develop the theory in a quantita-
tive manner which will permit us to examine the
agreement between theory and experiment in the
following two papers.

Within the context of the simple picture discussed
above we look at the behavior of the Helmholtz free
energy in the V-T plane. If we initially consider
the system as a “rigid lattice,” i.e., if we do not
allow any variation in interaction potentials, the
free energy will exhibit a singularity as a function
of temperature that is characteristic of a second-
order phase transition. We may consider a variety
of such systems differing in their lattice constants.
For them, the free energy 4, is a function of T and
parametrically of V because of the volume depen-
dence of the interaction strength. Thus, we can
draw a line AB in the V-T plane along which A, is
singular (see Fig. 2). However, we may also con-
sider A, as a function of the orthogonal variables 7
and € where lines of constant € are parallel to AB,
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the singular line. A, should be a well behaved func-
tion of , and we should be able to make the follow-
ing expansion which is valid everywhere except on
the singular line:

As(€9 7])=f0(€)+nf2(€)+772f3(€)+"‘ ’ (1)

where the f; is an unknown series of functions that
may be singular on the line AB which is taken to be
€=0. If we now consider only a small volume of
space about a point on the singular line, the singular
line will be essentially straight. 7 and € will be
linearly related to T and V, and the coordinate
transformation can be a simple rotation in the V-T
plane.

So far we have described a model. In the case of
ammonium chloride the phase transition is associ-
ated with the ordering of the ammonium tetrahedra.
It is the interaction between the tetradehra that gives
rise to the transition. In dealing with the real sys-
tem one must recognize that the lattice is not rigid.
There are three effects which result: (i) The average
volume will be a function of the temperature; (ii)
there will be fluctuations in the interparticle spacing
around the average, i.e., there are more general-
ized coordinates needed to describe the atomic posi-
tions than just the average volume; (iii) the back-
ground lattice will contribute a nonsingular part to
the free energy.

Our approximation consists of (a) neglecting the
fluctuations in (ii) above, (b) considering A, to be a
function of two variables only—7T and V or, equiva-
lently, € and n—(c) writing the total free energy as
a sum of A, and the nonsingular lattice contribution
AL,

A=AL(V, T)+A e, 1), (2

and (d) assuming various explicit forms for A; and
Ag, which will be discussed in what follows.

If we expand A; about a point V,, T, on the singular
line we have

AL(V, T) =Ao -So(T - To) —po(v - Vo)

e @Iyt 1 vy
TO 2 KTOVO 2

-B oy _vyr-19, B
KTo

where the symbols Ay, Sy, po, etc. may be viewed
simply as coefficients in an expansion, but a nota-
tion has been used which suggests their conventional
physical significance.

A possible form for A4, is

As=a0_a*|€|z-a*: (4)
where €=0 is the singular line and where a, and a,

refer to points above the singular line in the disor-
dered phase and a. and a_ refer to points below the
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singular line in the ordered phase. a, is simply a
constant. Henceforth the + subscripts will be left
off for simplicity. In the approximation that the
singular line is straight, we have

e=T=Tp, V-V,
AT AV
=7, "V, (5)

where the second equation defines AT and AV. The
slope of the singular line is —-nT,/V,, while T, and
V, locate a point on the singular line about which
the approximations are valid. For the special case
of n equal to zero, € takes the form (T - T,)/T, and
T, plays the role of a critical temperature in Eq.
(4). Equation (4) corresponds to only taking the
first term in the expression of Eq. (1).

Then using Eqs. (2)-(4) in the thermodynamic
relation relating pressure to free energy

8A

-p=§i; T, (6)

we obtain the relation

L av-Boar,
KTOVO KTO

-p=-D'al-(2- a)| €|t —po+
Vo
(7)
where D'=+1if €>0 and D'=-1 if €<0. This equa-
tion gives an implicit relation between V, T, p.
The thermal-expansion coefficient gat zero pres-
sure can be obtained from Eq. (7) by setting p=0
and taking the temperature derivative:

_ BoVo+(akpon/VoT)(2-a)l —a)l €|

BV o= 1 -akr n¥2-a)(l-a)lel~*/V, ®
Using the relation
9 8A
&=-757 |, (51), ©
and Eqs. (2)-(4) we obtain
C,=Cy+ 22z =0) |1

T,

+BV0[(BoTo /Kr°)+an(2- a)(1- a)' €|'°‘ ] . (10)

An example of a system that fits the above scheme
is the Ising system on a compressible lattice. If
we assume weak coupling between the Ising system
and the lattice, the Hamiltonian for this system is

¥e=3C, +3C; . (11)

The usual nearest-neighbor rigid-lattice Ising
model studied has the Hamiltonian

JCIRL=_JZ>0£UJ . (12)
i,

The simplest way of taking the distance dependence
of the interaction between the ammonium ions into
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account is to replace the constant J by a function of
the volume. Then

3 ,==d(V)2 040, . (13)
1,4

Applying statistical mechanics to this Hamiltonian,

we find the Helmholtz free energy for the ammonium

chloride system:

A=A, (V, T)+ALI(V), T) . (14)

Here A;(J, T) is the free energy of the system de-
scribed by the Hamiltonian in Eq. (12), and 4, is
the Helmholtz free energy of the background lattice.

By using elementary statistical mechanics, it can
be shown that

AJ(V), kT)= =kT®AV)/ET) , (15)

where &(J(V)/kT) is the logarithm of the partition
function. Since the background lattice has no phase
transition, the free energy A, will be a nonsingular
function and may be expanded in a power series as
in Eq. (3).

The physical properties of the total system can
now be found using Eqgs. (2), (3), (6), (9), and (5).
We find

1 B

—p==po+ AV - =L AT -3'J' 16
p Po KTUVO KTO ’ ( )
1 B J’
—p==po+ AV - =L AT - U 17
p pO KTOVO KTU J I ( )
and
T J
C,=Cy,+Cr+BV, {%lr:ﬂ +J'[d>' - q>"<1 +1?T">]} ,
(18)
B J’ U
CP= CVO+C, +BV0T0 [7(‘:; """]_ <CI+ ;{,‘)] . (19)
Here
I_dA(x) I_dJ(V) .
A=g 7= av

P 8(4; /kT)
! 8(1/kT)

is the internal energy of the Ising system; and C,
=(J/kT)?K®" = —(U{J/kT?+2U, /T) is the constant-
volume heat capacity of the Ising system.

Note that C, contains 8, the thermal expansion of
the total system. It can be found by taking the de-

rivative of Eq. (17) with respect to temperature at
constant pressure:

_ __BoVo—kr VoW '/0)C;
1= kpoVolU'/0)TC, = U /D] °

Since J' should be negative for a system like am-
monium chloride, and C; should be positive, the
numerator of g will always be positive. Also, in
the neighborhood of the second-order phase transi-
tion U; or &' should be much more slowly varying

BV,

(20)



910 SLICHTER, SEIDEL, SCHWARTZ, AND FREDERICKS 4
Ci<Ce J=Jdo(1 -nav/vy) . (23)

Ce Pl For A;, it is desirable to choose a function that

Vv cp% R . will easily relate to the theory. One possibility is

N -7 X Equilibrium to use the results of some calculation such as the

, Curve exact solution of the two-dimensional Ising model

FIG. 3. Volume-temperature relation predicted by the
theory when C; exceed C¢ near the singular line.

than C;. Then, if the heat capacity of the Ising sys-
tem reaches a critical value

1 J\?
= 21
KTOVOT( J,), (21)

B will go to infinity. In passing through the infinity
B will change sign. Since B is the dominant term in
C, at this point, the heat capacity also changes sign.
This sign change also occurs in x, the isothermal
compressibility. These sign changes in x; and C,
are forbidden thermodynamically and are an indica-
tion that the system undergoes a first-order phase
change to maintain stability.

In Fig. 3 there is a schematic representation of
the prediction of this model when C; exceeds C.
at the second-order transition. The critical line
J/kT = x, represents the line of second-order tran-
sitions for the Ising system. Contours of constant
C; are drawn near it, and the dashed curve repre-
sents the V-T relation predicted by the model.

In order to go beyond the general equations found
above, some form must be assumed for J(V) and
A

For J, a reasonable form that has the proper
sign for the first derivative is

J=JdGV /v, (22)

CcE

In the neighborhood of the expansion point this be-
comes

as Garland and Renard did. Another such result is
found in the work of Wakefield'® on the Ising model
in a simple cubic lattice.

A function which is commonly used to characterize
the critical behavior of the heat capacity near a
second-order phase transition is

Cr~ el , (24)

where €=(T -T,)/T, and J/kT, = x, is the singular
point of the free energy. Then a good choice for
A is

Ar=-a,|€|F* +a,, (25)
where
€:AT/T0+nAV/V0, Jo/kT():xc. (26)

This choice of € puts the expansion point V,, T, on
the singular line of A; and is obtained by expanding
the relation J(V)/kT=x, to lowest order in A V and
AT. Now contact is made between the compressible
Ising system and the earlier general assumptions.

The parameter n expresses the strength of the
volume dependence of the interaction responsible
for the transition. For the ammonium chloride sys-
tem the interaction is that between the ammonia
tetrahedra. Part of the interaction is Coulombic
and may be expressed as the sum of interactions of
the electrostatic multipoles of the tetrahedra. The
lowest-order nonzero term that depends on the rel-
ative orientation of the tetrahedra is the octupole-
octupole interaction.

The other part of the interaction is classified
non-Coulombic!® and may come from a hard-core
potential that exists between the ions or perhaps
from hydrogen-bonding effects.'® There is not suf-
ficient information about the volume dependence of
the parameters involved to obtain a theoretical
value for n.

The other parameters appearing in the theory are
harder to obtain theoretically. Much work has been
done on the problem of second-order phase transi-
tions, so in some cases the parameters in A; may
have been calculated. The properties of the lattice
are even harder to calculate from first principles.
Thus, the lattice parameters, as well as any of the
parameters describing the Ising system, may be
treated as adjustable numbers when comparing the
predictions of the theory to the results of an experi-
ment.
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The thermal expansion of ammonium chloride has been measured in the neighborhood of the
order-disorder transition near 242°K. At 1 atm, the transition is found to be first order with
a hysteresis of 0.21 °K. The measured thermal expansion shows sample dependence. The
volume-versus-temperature data are fitted using the theory presented in the first paper of this
series. These fits show qualitative agreement between theory and experiment, but systematic
deviations outside the experimental scatter are found, especially near the transition. Values
of the critical exponents ¢, and o_ of 0.97 and 0.75, respectively, were found to give the best
fit to the data, in striking disagreement with theoretical calculations using the Ising Model.

1. INTRODUCTION

The suggestion that the phase transition of an
Ising system on a compressible lattice might be-
come first order has been made by a number of
workers.!™® Ammonium chloride has been exten-
sively studied in this regard.” Since the work re-
ported here was completed, there has been further
theoretical work on the compressible Ising system
by Baker and Essam,® Wagner,® and Wagner and
Swift.'° In this later work it is shown that if the
lattice spacing is allowed to accommodate locally
to the spin fluctuations then the first-order transi-
tion of the earlier theory goes away.

However, at 1 atm, the transition in ammonium
chloride is first order experimentally. Conse-
quently, a test of these earlier theories for am-
monium chloride is still worthwhile. It is quite
possible that the results of these earlier theories
will find better theoretical justification as time goes
on.

One of the most straightforward tests of the the-
ory of the first paper in this series is to see
whether or not it can account for the volume-ver-
sus-temperature data for ammonium chloride. The
thermal expansion of ammonium chloride has been
measured by a number of workers. A list of ref-

erences to their work has been compiled by Saka-
moto.!* Boiko!? has also made a recent measure-
ment of the thermal expansion by x-ray diffraction.
We undertook to remeasure the thermal expansion
to a higher resolution in order to make a better test
of the theory of the transition.

II. EXPERIMENTAL TECHNIQUE

The temperature of the sample chamber was
stabilized by the following method. The chamber
was a 1-kg cylinder of copper. This cylinder was
suspended in vacuum by two 3-in.-diam 0. 010-in.-
walled stainless-steel tubes. The sample chamber
was surrounded by an annular tank filled with liquid
nitrogen. A copper flange about 15 cm above the
sample chamber provided thermal contact between
the nitrogen tank and the stainless-steel tubes. The
sample chamber was wound with 70 € of nichrome
heater wire. Temperature control then involved
supplying the correct power to the heater to balance
the heat flow to the nitrogen tank.

A thermistor was glued directly to the heater with
thermally conducting epoxy. This thermistor was
placed in one arm of a Wheatstone bridge, whose
voltage source was the reference output of a PAR
JB-5 lock-in amplifier. The off-balance signal of
the bridge went to a PAR CR-4 low-noise pream-



